1章 機械学習の解釈性とは
2章 線形回帰モデルを通して「解釈性」を理解する
3章 特徴量の重要度を知る―Permutation Feature Importance
4章 特徴量と予測値の関係を知る―Partial Dependence
5章 インスタンスごとの異質性をとらえる―Individual Conditional Expectation
6章 予測の理由を考える―SHapley Additive exPlanations
付録A Rによる分析例―tidymodelsとDALEXで機械学習モデルを解釈する
付録B 機械学習の解釈手法で線形回帰モデルを解釈する
